47

ric mode is still active, the process returns to step 484 to sense the current position of the user object.

It should be noted that steps 488, 490, and 492 can each be performed independently of each other, since each step only requires the deviation data of step 486 to be performed. Thus, steps 488, 490 and 492 can be performed in any desired order, or, preferably, substantially simultaneously.

FIG. 16 is a flow diagram illustrating step 490 of FIG. 15, in which a resistive output force is applied to the user object 12. The process begins at 500, and in step 502, a restoring force is determined based on the deviation found in step 486 and any other applicable conditions. In the described embodiment, a restoring force is applied to the user object. A restoring force is a linear force vs. displacement relationship 516 and is shown in FIG. 16a. The restoring force increases in magnitude the further the object is moved from the local origin O, and is applied in a direction opposing the deviation of the user object from the local origin. A restoring force can be described as a "spring return", since it feels to the user as if a strong spring resists displacement of the user object. The restoring force provides a return sensation that forces or "restores" the user object to the local origin O. In the described example, the restoring force can be modeled using Hooke's Law, where resistance force F is proportional to the displacement or deviation d, such that:

$$F=k*d$$
 (1)

where d is the deviation along an axis or degree of freedom (-d indicates an opposite direction to +d) and k is a spring 30 document may be associated with a higher k and allow the constant defining the magnitude of force. In other embodiments, a spring restoring force can be modelled with an exponential stiffness or other relationship rather than the linear stiffness of Equation (1). Also, as shown in FIG. 16a, a saturation region 518 can be provided, where the magni- 35 might also determine a panning k; e.g., if a view displayed tude of force generally remains constant when the user object is moved past a particular distance D. Positive and/or negative saturation regions can be defined for each degree of freedom. In some embodiments, the saturation force magnitude is can be limited to a predetermined percentage of the 40 maximum possible output force in a the selected degree of freedom, so that overlay forces can be overlaid on top of the restoring force sensation (or, impulse shaping can perform this limiting function, as described in co-pending application and incorporated by reference herein).

For example, FIG. 16b is a schematic diagram illustrating the forces on user object 12 in the button mode control (cursor-less) embodiment described above. Once the mode The user object 12 then is provided with a local origin O and a four-way restoring force, indicated by the spring schematics 520. Thus, as long as the button is held by the user and isometric mode is active, the user object will be forced other embodiments, isometric mode can be toggled by a button click, so that the button need not be held to maintain isometric mode. Also, different numbers of springs 520 can be simulated; for example, restoring forces might only be applied in the up and down directions. In the graphical object embodiment, typically one spring 520 is provided perpendicular to the surface 358 into which the cursor 306 is moved. The diagram of FIG. 16b assumes a user object having 2 degrees of freedom; the diagram can be, for example, a "cube" of springs in 3 degree of freedom 65 embodiment, a line of springs in a 1 degree of freedom embodiment, etc.

48

Other characteristics or conditions can also affect the magnitude and/or direction of the restoring force. For example, the magnitude of the restoring force F can be changed by altering the spring constant k. For example, a different k can be used in each two available isometric modes. If isometric mode #1 is active from a press of button #1 on puck 22, a large k can be used to calculate F, thus providing the user with a large restoring force. A large restoring force opposes the user's motion more strongly in less distance d, and thus provides a coarse degree of control over an isometric function such as the speed of scrolling text. In contrast, if an isometric mode #2 is active from button #2 on the puck 22, a smaller k can be used, thus providing a smaller restoring force and a finer degree of control over an isometric function.

In the graphical mode control embodiments, k can be varied for different graphical objects or surfaces engaged by the cursor. For example, a surface 358 of one graphical object might be associated with a large k and coarse isometric input, and a surface 358 of a different object might be associated with a smaller k and fine isometric input. Alternatively, a graphical object or button associated with an isometric function such as scrolling text might have one k, while a graphical object or button associated with a different 25 isometric function such as panning or zooming the view on screen 20 might have a different k. In other embodiments, k might be varied depending on a different characteristic or condition. For example, k can be proportional to the size of a controlled document (e.g., in bytes), so that a large user to easily control a higher speed of scrolling text. Likewise, a smaller-sized document may be associated with a smaller k and allow the user to more finely control the speed of scrolling. The detail or zoom level in a viewscreen on the screen is a large zoom-out, showing little detail, then the panning rate can be made more coarse using a larger k. If the view is more detailed with a close zoom-in, the panning rate can be made more fine using a small k.

In other embodiments, different relationships or formulas can be used to determine the magnitude of the restoring force (or another type of force instead of a restoring force, if desired). For example, a damping force might be used instead of or in addition to a spring force for different types Ser. No. 08/747,844, filed Nov. 13, 1996 by Rosenberg et al. 45 of objects, isometric functions, or modes. A friction force might be added to the restoring force of equation (1) for further effect, and/or an inertia force.

The direction of the deviation, as mentioned above in step 486, may also be used to provide different magnitudes of button is pressed and held down, isometric mode is active. 50 restoring forces. For example, k can be made different in different directions, e.g., +k can be different than -k in a degree of freedom such that it is much harder to push puck 22 forward than to pull it back. The direction of the deviation can also determine if the restoring force is to be applied or toward the origin position O by simulated springs 520. In 55 not. For example, in the second graphical object embodiment as shown in FIG. 10, the restoring force is only applied when the direction of the deviation is a direction toward the surface 358. If the deviation direction is away from the surface 358, then no restoring force is applied, since isometric mode has not been utilized by moving the cursor into the "isometric surface." In some button embodiments, the direction of the deviation might not affect whether the restoring force is applied or not. Also, in an alternate embodiment, the direction of the deviation can affect the magnitude of the restoring force. For example, if the deviation direction is approximately perpendicular to a surface 358 in FIG. 10 as shown by arrow 496, the maximum